Controllable Face Aging

20 Dec 2019Haien ZengHanjiang LaiJian Yin

Motivated by the following two observations: 1) people are aging differently under different conditions for changeable facial attributes, e.g., skin color may become darker when working outside, and 2) it needs to keep some unchanged facial attributes during the aging process, e.g., race and gender, we propose a controllable face aging method via attribute disentanglement generative adversarial network. To offer fine control over the synthesized face images, first, an individual embedding of the face is directly learned from an image that contains the desired facial attribute... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet