Convergence Analysis for Rectangular Matrix Completion Using Burer-Monteiro Factorization and Gradient Descent

23 May 2016  ·  Qinqing Zheng, John Lafferty ·

We address the rectangular matrix completion problem by lifting the unknown matrix to a positive semidefinite matrix in higher dimension, and optimizing a nonconvex objective over the semidefinite factor using a simple gradient descent scheme. With $O( \mu r^2 \kappa^2 n \max(\mu, \log n))$ random observations of a $n_1 \times n_2$ $\mu$-incoherent matrix of rank $r$ and condition number $\kappa$, where $n = \max(n_1, n_2)$, the algorithm linearly converges to the global optimum with high probability...

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here