Convergence Analysis of Block Coordinate Algorithms with Determinantal Sampling

25 Oct 2019  ·  Mojmír Mutný, Michał Dereziński, Andreas Krause ·

We analyze the convergence rate of the randomized Newton-like method introduced by Qu et. al. (2016) for smooth and convex objectives, which uses random coordinate blocks of a Hessian-over-approximation matrix $\bM$ instead of the true Hessian. The convergence analysis of the algorithm is challenging because of its complex dependence on the structure of $\bM$. However, we show that when the coordinate blocks are sampled with probability proportional to their determinant, the convergence rate depends solely on the eigenvalue distribution of matrix $\bM$, and has an analytically tractable form. To do so, we derive a fundamental new expectation formula for determinantal point processes. We show that determinantal sampling allows us to reason about the optimal subset size of blocks in terms of the spectrum of $\bM$. Additionally, we provide a numerical evaluation of our analysis, demonstrating cases where determinantal sampling is superior or on par with uniform sampling.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here