Convergence of adaptive algorithms for weakly convex constrained optimization

11 Jun 2020  ·  Ahmet Alacaoglu, Yura Malitsky, Volkan Cevher ·

We analyze the adaptive first order algorithm AMSGrad, for solving a constrained stochastic optimization problem with a weakly convex objective. We prove the $\mathcal{\tilde O}(t^{-1/4})$ rate of convergence for the norm of the gradient of Moreau envelope, which is the standard stationarity measure for this class of problems. It matches the known rates that adaptive algorithms enjoy for the specific case of unconstrained smooth stochastic optimization. Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly unbounded optimization domains. Finally, we illustrate the applications and extensions of our results to specific problems and algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods