# Convergence of Graph Laplacian with kNN Self-tuned Kernels

3 Nov 2020  ·  , ·

Kernelized Gram matrix $W$ constructed from data points $\{x_i\}_{i=1}^N$ as $W_{ij}= k_0( \frac{ \| x_i - x_j \|^2} {\sigma^2} )$ is widely used in graph-based geometric data analysis and unsupervised learning. An important question is how to choose the kernel bandwidth $\sigma$, and a common practice called self-tuned kernel adaptively sets a $\sigma_i$ at each point $x_i$ by the $k$-nearest neighbor (kNN) distance... When $x_i$'s are sampled from a $d$-dimensional manifold embedded in a possibly high-dimensional space, unlike with fixed-bandwidth kernels, theoretical results of graph Laplacian convergence with self-tuned kernels have been incomplete. This paper proves the convergence of graph Laplacian operator $L_N$ to manifold (weighted-)Laplacian for a new family of kNN self-tuned kernels $W^{(\alpha)}_{ij} = k_0( \frac{ \| x_i - x_j \|^2}{ \epsilon \hat{\rho}(x_i) \hat{\rho}(x_j)})/\hat{\rho}(x_i)^\alpha \hat{\rho}(x_j)^\alpha$, where $\hat{\rho}$ is the estimated bandwidth function {by kNN}, and the limiting operator is also parametrized by $\alpha$. When $\alpha = 1$, the limiting operator is the weighted manifold Laplacian $\Delta_p$. Specifically, we prove the point-wise convergence of $L_N f$ and convergence of the graph Dirichlet form with rates. Our analysis is based on first establishing a $C^0$ consistency for $\hat{\rho}$ which bounds the relative estimation error $|\hat{\rho} - \bar{\rho}|/\bar{\rho}$ uniformly with high probability, where $\bar{\rho} = p^{-1/d}$, and $p$ is the data density function. Our theoretical results reveal the advantage of self-tuned kernel over fixed-bandwidth kernel via smaller variance error in low-density regions. In the algorithm, no prior knowledge of $d$ or data density is needed. The theoretical results are supported by numerical experiments on simulated data and hand-written digit image data. read more

PDF Abstract

## Code Add Remove Mark official

No code implementations yet. Submit your code now

## Datasets

Add Datasets introduced or used in this paper

## Results from the Paper Edit

Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.