Convergence of Langevin MCMC in KL-divergence

25 May 2017Xiang ChengPeter Bartlett

Langevin diffusion is a commonly used tool for sampling from a given distribution. In this work, we establish that when the target density $p^*$ is such that $\log p^*$ is $L$ smooth and $m$ strongly convex, discrete Langevin diffusion produces a distribution $p$ with $KL(p||p^*)\leq \epsilon$ in $\tilde{O}(\frac{d}{\epsilon})$ steps, where $d$ is the dimension of the sample space... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet