Convergence of Multi-Agent Learning with a Finite Step Size in General-Sum Games

7 Mar 2019  ·  Xinliang Song, Tonghan Wang, Chongjie Zhang ·

Learning in a multi-agent system is challenging because agents are simultaneously learning and the environment is not stationary, undermining convergence guarantees. To address this challenge, this paper presents a new gradient-based learning algorithm, called Gradient Ascent with Shrinking Policy Prediction (GA-SPP), which augments the basic gradient ascent approach with the concept of shrinking policy prediction. The key idea behind this algorithm is that an agent adjusts its strategy in response to the forecasted strategy of the other agent, instead of its current one. GA-SPP is shown formally to have Nash convergence in larger settings than existing gradient-based multi-agent learning methods. Furthermore, unlike existing gradient-based methods, GA-SPP's theoretical guarantees do not assume the learning rate to be infinitesimal.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here