Convergent Adaptive Gradient Methods in Decentralized Optimization

1 Jan 2021  ·  Xiangyi Chen, Belhal Karimi, Weijie Zhao, Ping Li ·

Adaptive gradient methods including Adam, AdaGrad, and their variants have been very successful for training deep learning models, such as neural networks, in the past few years. Meanwhile, given the need for distributed training procedures, distributed optimization algorithms are at the center of attention. With the growth of computing power and the need for using machine learning models on mobile devices, the communication cost of distributed training algorithms needs careful consideration. In that regard, more and more attention is shifted from the traditional parameter server training paradigm to the decentralized one, which usually requires lower communication costs. In this paper, we rigorously incorporate adaptive gradient methods into decentralized training procedures and introduce novel convergent decentralized adaptive gradient methods. Specifically, we propose a general algorithmic framework that can convert existing adaptive gradient methods to their decentralized counterparts. In addition, we thoroughly analyze the convergence behavior of the proposed algorithmic framework and show that if a given adaptive gradient method converges, under some specific conditions, then its decentralized counterpart is also convergent.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods