Convex Decomposition And Efficient Shape Representation Using Deformable Convex Polytopes

23 Jun 2016Fitsum MesadiTolga Tasdizen

Decomposition of shapes into (approximate) convex parts is essential for applications such as part-based shape representation, shape matching, and collision detection. In this paper, we propose a novel convex decomposition using a parametric implicit shape model called Disjunctive Normal Shape Model (DNSM)... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet