“Convex Until Proven Guilty”: Dimension-Free Acceleration of Gradient Descent on Non-Convex Functions

We develop and analyze a variant of Nesterov’s accelerated gradient descent (AGD) for minimization of smooth non-convex functions. We prove that one of two cases occurs: either our AGD variant converges quickly, as if the function was convex, or we produce a certificate that the function is “guilty” of being non-convex. This non-convexity certificate allows us to exploit negative curvature and obtain deterministic, dimension-free acceleration of convergence for non-convex functions. For a function $f$ with Lipschitz continuous gradient and Hessian, we compute a point $x$ with $\|\nabla f(x)\| \le \epsilon$ in $O(\epsilon^{-7/4} \log(1/ \epsilon) )$ gradient and function evaluations. Assuming additionally that the third derivative is Lipschitz, we require only $O(\epsilon^{-5/3} \log(1/ \epsilon) )$ evaluations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here