Convolutional Bipartite Attractor Networks

8 Jun 2019  ·  Michael Iuzzolino, Yoram Singer, Michael C. Mozer ·

In human perception and cognition, a fundamental operation that brains perform is interpretation: constructing coherent neural states from noisy, incomplete, and intrinsically ambiguous evidence. The problem of interpretation is well matched to an early and often overlooked architecture, the attractor network---a recurrent neural net that performs constraint satisfaction, imputation of missing features, and clean up of noisy data via energy minimization dynamics. We revisit attractor nets in light of modern deep learning methods and propose a convolutional bipartite architecture with a novel training loss, activation function, and connectivity constraints. We tackle larger problems than have been previously explored with attractor nets and demonstrate their potential for image completion and super-resolution. We argue that this architecture is better motivated than ever-deeper feedforward models and is a viable alternative to more costly sampling-based generative methods on a range of supervised and unsupervised tasks.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here