Convolutional Spike Timing Dependent Plasticity based Feature Learning in Spiking Neural Networks

10 Mar 2017  ·  Priyadarshini Panda, Gopalakrishnan Srinivasan, Kaushik Roy ·

Brain-inspired learning models attempt to mimic the cortical architecture and computations performed in the neurons and synapses constituting the human brain to achieve its efficiency in cognitive tasks. In this work, we present convolutional spike timing dependent plasticity based feature learning with biologically plausible leaky-integrate-and-fire neurons in Spiking Neural Networks (SNNs). We use shared weight kernels that are trained to encode representative features underlying the input patterns thereby improving the sparsity as well as the robustness of the learning model. We demonstrate that the proposed unsupervised learning methodology learns several visual categories for object recognition with fewer number of examples and outperforms traditional fully-connected SNN architectures while yielding competitive accuracy. Additionally, we observe that the learning model performs out-of-set generalization further making the proposed biologically plausible framework a viable and efficient architecture for future neuromorphic applications.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here