COO: Comic Onomatopoeia Dataset for Recognizing Arbitrary or Truncated Texts

11 Jul 2022  ·  Jeonghun Baek, Yusuke Matsui, Kiyoharu Aizawa ·

Recognizing irregular texts has been a challenging topic in text recognition. To encourage research on this topic, we provide a novel comic onomatopoeia dataset (COO), which consists of onomatopoeia texts in Japanese comics. COO has many arbitrary texts, such as extremely curved, partially shrunk texts, or arbitrarily placed texts. Furthermore, some texts are separated into several parts. Each part is a truncated text and is not meaningful by itself. These parts should be linked to represent the intended meaning. Thus, we propose a novel task that predicts the link between truncated texts. We conduct three tasks to detect the onomatopoeia region and capture its intended meaning: text detection, text recognition, and link prediction. Through extensive experiments, we analyze the characteristics of the COO. Our data and code are available at \url{https://github.com/ku21fan/COO-Comic-Onomatopoeia}.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here