Discourse Understanding and Factual Consistency in Abstractive Summarization

We introduce a general framework for abstractive summarization with factual consistency and distinct modeling of the narrative flow in an output summary. Our work addresses current limitations of models for abstractive summarization that often hallucinate information or generate summaries with coherence issues. To generate abstractive summaries with factual consistency and narrative flow, we propose Cooperative Generator -- Discriminator Networks (Co-opNet), a novel transformer-based framework where a generator works with a discriminator architecture to compose coherent long-form summaries. We explore four different discriminator objectives which each capture a different aspect of coherence, including whether salient spans of generated abstracts are hallucinated or appear in the input context, and the likelihood of sentence adjacency in generated abstracts. We measure the ability of Co-opNet to learn these objectives with arXiv scientific papers, using the abstracts as a proxy for gold long-form scientific article summaries. Empirical results from automatic and human evaluations demonstrate that Co-opNet learns to summarize with considerably improved global coherence compared to competitive baselines.

PDF Abstract EACL 2021 PDF EACL 2021 Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here