Cooperative Online Learning: Keeping your Neighbors Updated

23 Jan 2019  ·  Nicolò Cesa-Bianchi, Tommaso R. Cesari, Claire Monteleoni ·

We study an asynchronous online learning setting with a network of agents. At each time step, some of the agents are activated, requested to make a prediction, and pay the corresponding loss. The loss function is then revealed to these agents and also to their neighbors in the network. Our results characterize how much knowing the network structure affects the regret as a function of the model of agent activations. When activations are stochastic, the optimal regret (up to constant factors) is shown to be of order $\sqrt{\alpha T}$, where $T$ is the horizon and $\alpha$ is the independence number of the network. We prove that the upper bound is achieved even when agents have no information about the network structure. When activations are adversarial the situation changes dramatically: if agents ignore the network structure, a $\Omega(T)$ lower bound on the regret can be proven, showing that learning is impossible. However, when agents can choose to ignore some of their neighbors based on the knowledge of the network structure, we prove a $O(\sqrt{\overline{\chi} T})$ sublinear regret bound, where $\overline{\chi} \ge \alpha$ is the clique-covering number of the network.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here