Coordinating CAV Swarms at Intersections with a Deep Learning Model

10 Nov 2022  ·  Jiawei Zhang, Shen Li, Li Li ·

Connected and automated vehicles (CAVs) are viewed as a special kind of robots that have the potential to significantly improve the safety and efficiency of traffic. In contrast to many swarm robotics studies that are demonstrated in labs by employing a small number of robots, CAV studies aims to achieve cooperative driving of unceasing robot swarm flows. However, how to get the optimal passing order of such robot swarm flows even for a signal-free intersection is an NP-hard problem (specifically, enumerating based algorithm takes days to find the optimal solution to a 20-CAV scenario). Here, we introduce a novel cooperative driving algorithm (AlphaOrder) that combines offline deep learning and online tree searching to find a near-optimal passing order in real-time. AlphaOrder builds a pointer network model from solved scenarios and generates near-optimal passing orders instantaneously for new scenarios. Furthermore, our approach provides a general approach to managing preemptive resource sharing between swarm robotics (e.g., scheduling multiple automated guided vehicles (AGVs) and unmanned aerial vehicles (UAVs) at conflicting areas

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods