Copeland Dueling Bandit Problem: Regret Lower Bound, Optimal Algorithm, and Computationally Efficient Algorithm

5 May 2016  ·  Junpei Komiyama, Junya Honda, Hiroshi Nakagawa ·

We study the K-armed dueling bandit problem, a variation of the standard stochastic bandit problem where the feedback is limited to relative comparisons of a pair of arms. The hardness of recommending Copeland winners, the arms that beat the greatest number of other arms, is characterized by deriving an asymptotic regret bound... We propose Copeland Winners Relative Minimum Empirical Divergence (CW-RMED) and derive an asymptotically optimal regret bound for it. However, it is not known whether the algorithm can be efficiently computed or not. To address this issue, we devise an efficient version (ECW-RMED) and derive its asymptotic regret bound. Experimental comparisons of dueling bandit algorithms show that ECW-RMED significantly outperforms existing ones. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here