Coreset-Based Adaptive Tracking

We propose a method for learning from streaming visual data using a compact, constant size representation of all the data that was seen until a given moment. Specifically, we construct a 'coreset' representation of streaming data using a parallelized algorithm, which is an approximation of a set with relation to the squared distances between this set and all other points in its ambient space... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet