COROLA: A Sequential Solution to Moving Object Detection Using Low-rank Approximation

13 May 2015  ·  Moein Shakeri, Hong Zhang ·

Extracting moving objects from a video sequence and estimating the background of each individual image are fundamental issues in many practical applications such as visual surveillance, intelligent vehicle navigation, and traffic monitoring. Recently, some methods have been proposed to detect moving objects in a video via low-rank approximation and sparse outliers where the background is modeled with the computed low-rank component of the video and the foreground objects are detected as the sparse outliers in the low-rank approximation. All of these existing methods work in a batch manner, preventing them from being applied in real time and long duration tasks. In this paper, we present an online sequential framework, namely contiguous outliers representation via online low-rank approximation (COROLA), to detect moving objects and learn the background model at the same time. We also show that our model can detect moving objects with a moving camera. Our experimental evaluation uses simulated data and real public datasets and demonstrates the superior performance of COROLA in terms of both accuracy and execution time.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here