Correlated and Individual Multi-Modal Deep Learning for RGB-D Object Recognition

6 Apr 2016  ·  Ziyan Wang, Jiwen Lu, Ruogu Lin, Jianjiang Feng, Jie zhou ·

In this paper, we propose a new correlated and individual multi-modal deep learning (CIMDL) method for RGB-D object recognition. Unlike most conventional RGB-D object recognition methods which extract features from the RGB and depth channels individually, our CIMDL jointly learns feature representations from raw RGB-D data with a pair of deep neural networks, so that the sharable and modal-specific information can be simultaneously exploited. Specifically, we construct a pair of deep convolutional neural networks (CNNs) for the RGB and depth data, and concatenate them at the top layer of the network with a loss function which learns a new feature space where both correlated part and the individual part of the RGB-D information are well modelled. The parameters of the whole networks are updated by using the back-propagation criterion. Experimental results on two widely used RGB-D object image benchmark datasets clearly show that our method outperforms state-of-the-arts.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here