Cortical Features for Defense Against Adversarial Audio Attacks

30 Jan 2021  ·  Ilya Kavalerov, Ruijie Zheng, Wojciech Czaja, Rama Chellappa ·

We propose using a computational model of the auditory cortex as a defense against adversarial attacks on audio. We apply several white-box iterative optimization-based adversarial attacks to an implementation of Amazon Alexa's HW network, and a modified version of this network with an integrated cortical representation, and show that the cortical features help defend against universal adversarial examples. At the same level of distortion, the adversarial noises found for the cortical network are always less effective for universal audio attacks. We make our code publicly available at

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here