Cosmic Reionization and the 21-cm signal: Comparison between an analytical model and a simulation

20 Aug 2007  ·  Mario G. Santos, Alexandre Amblard, Jonathan Pritchard, Hy Trac, Renyue Cen, Asantha Cooray ·

We measure several properties of the reionization process and the corresponding low-frequency 21-cm signal associated with the neutral hydrogen distribution, using a large volume, high resolution simulation of cosmic reionization. The brightness temperature of the 21-cm signal is derived by post-processing this numerical simulation with a semi-analytical prescription. Our study extends to high redshifts (z ~ 25) where, in addition to collisional coupling, our post-processed simulations take into account the inhomogeneities in the heating of the neutral gas by X-rays and the effect of an inhomogeneous Lya radiation field. Unlike the well-studied case where spin temperature is assumed to be significantly greater than the temperature of the cosmic microwave background due to uniform heating of the gas by X-rays, spatial fluctuations in both the Lya radiation field and X-ray intensity impact predictions related to the brightness temperature at z > 10, during the early stages of reionization and gas heating. The statistics of the 21-cm signal from our simulation are then compared to existing analytical models in the literature and we find that these analytical models provide a reasonably accurate description of the 21-cm power spectrum at z < 10. Such an agreement is useful since analytical models are better suited to quickly explore the full astrophysical and cosmological parameter space relevant for future 21-cm surveys. We find, nevertheless, non-negligible differences that can be attributed to differences in the inhomogeneous X-ray heating and Lya coupling at z > 10 and, with upcoming interferometric data, these differences in return can provide a way to better understand the astrophysical processes during reionization.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here