Cost Aware Untargeted Poisoning Attack against Graph Neural Networks,

12 Dec 2023  ·  Yuwei Han, Yuni Lai, Yulin Zhu, Kai Zhou ·

Graph Neural Networks (GNNs) have become widely used in the field of graph mining. However, these networks are vulnerable to structural perturbations. While many research efforts have focused on analyzing vulnerability through poisoning attacks, we have identified an inefficiency in current attack losses. These losses steer the attack strategy towards modifying edges targeting misclassified nodes or resilient nodes, resulting in a waste of structural adversarial perturbation. To address this issue, we propose a novel attack loss framework called the Cost Aware Poisoning Attack (CA-attack) to improve the allocation of the attack budget by dynamically considering the classification margins of nodes. Specifically, it prioritizes nodes with smaller positive margins while postponing nodes with negative margins. Our experiments demonstrate that the proposed CA-attack significantly enhances existing attack strategies

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods