Counterexample Guided Inductive Optimization Applied to Mobile Robots Path Planning (Extended Version)

14 Aug 2017Rodrigo F. AraújoAlexandre RibeiroIury V. BessaLucas C. CordeiroJoão E. C. Filho

We describe and evaluate a novel optimization-based off-line path planning algorithm for mobile robots based on the Counterexample-Guided Inductive Optimization (CEGIO) technique. CEGIO iteratively employs counterexamples generated from Boolean Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) solvers, in order to guide the optimization process and to ensure global optimization... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet