Counterfactual Explanations for Machine Learning: Challenges Revisited

14 Jun 2021  ·  Sahil Verma, John Dickerson, Keegan Hines ·

Counterfactual explanations (CFEs) are an emerging technique under the umbrella of interpretability of machine learning (ML) models. They provide ``what if'' feedback of the form ``if an input datapoint were $x'$ instead of $x$, then an ML model's output would be $y'$ instead of $y$.'' Counterfactual explainability for ML models has yet to see widespread adoption in industry. In this short paper, we posit reasons for this slow uptake. Leveraging recent work outlining desirable properties of CFEs and our experience running the ML wing of a model monitoring startup, we identify outstanding obstacles hindering CFE deployment in industry.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here