Coupled Compound Poisson Factorization

9 Jan 2017  ·  Mehmet E. Basbug, Barbara E. Engelhardt ·

We present a general framework, the coupled compound Poisson factorization (CCPF), to capture the missing-data mechanism in extremely sparse data sets by coupling a hierarchical Poisson factorization with an arbitrary data-generating model. We derive a stochastic variational inference algorithm for the resulting model and, as examples of our framework, implement three different data-generating models---a mixture model, linear regression, and factor analysis---to robustly model non-random missing data in the context of clustering, prediction, and matrix factorization... In all three cases, we test our framework against models that ignore the missing-data mechanism on large scale studies with non-random missing data, and we show that explicitly modeling the missing-data mechanism substantially improves the quality of the results, as measured using data log likelihood on a held-out test set. read more

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here