Covariance Recovery for One-Bit Sampled Data With Time-Varying Sampling Thresholds-Part I: Stationary Signals

16 Mar 2022  ·  Arian Eamaz, Farhang Yeganegi, Mojtaba Soltanalian ·

One-bit quantization, which relies on comparing the signals of interest with given threshold levels, has attracted considerable attention in signal processing for communications and sensing. A useful tool for covariance recovery in such settings is the arcsine law, that estimates the normalized covariance matrix of zero-mean stationary input signals. This relation, however, only considers a zero sampling threshold, which can cause a remarkable information loss. In this paper, the idea of the arcsine law is extended to the case where one-bit analog-to-digital converters (ADCs) apply time-varying thresholds. Specifically, three distinct approaches are proposed, investigated, and compared, to recover the autocorrelation sequence of the stationary signals of interest. Additionally, we will study a modification of the Bussgang law, a famous relation facilitating the recovery of the cross-correlation between the one-bit sampled data and the zero-mean stationary input signal. Similar to the case of the arcsine law, the Bussgang law only considers a zero sampling threshold. This relation is also extended to accommodate the more general case of time-varying thresholds for the stationary input signals.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here