COVID-19 and Misinformation: A Large-Scale Lexical Analysis on Twitter

Social media is often used by individuals and organisations as a platform to spread misinformation. With the recent coronavirus pandemic we have seen a surge of misinformation on Twitter, posing a danger to public health. In this paper, we compile a large COVID-19 Twitter misinformation corpus and perform an analysis to discover patterns with respect to vocabulary usage. Among others, our analysis reveals that the variety of topics and vocabulary usage are considerably more limited and negative in tweets related to misinformation than in randomly extracted tweets. In addition to our qualitative analysis, our experimental results show that a simple linear model based only on lexical features is effective in identifying misinformation-related tweets (with accuracy over 80{\%}), providing evidence to the fact that the vocabulary used in misinformation largely differs from generic tweets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here