CROP: Certifying Robust Policies for Reinforcement Learning through Functional Smoothing

As reinforcement learning (RL) has achieved great success and been even adopted in safety-critical domains such as autonomous vehicles, a range of empirical studies have been conducted to improve its robustness against adversarial attacks. However, how to certify its robustness with theoretical guarantees still remains challenging. In this paper, we present the first unified framework CROP (Certifying Robust Policies for RL) to provide robustness certification on both action and reward levels. In particular, we propose two robustness certification criteria: robustness of per-state actions and lower bound of cumulative rewards. We then develop a local smoothing algorithm for policies derived from Q-functions to guarantee the robustness of actions taken along the trajectory; we also develop a global smoothing algorithm for certifying the lower bound of a finite-horizon cumulative reward, as well as a novel local smoothing algorithm to perform adaptive search in order to obtain tighter reward certification. Empirically, we apply CROP to evaluate several existing empirically robust RL algorithms, including adversarial training and different robust regularization, in four environments (two representative Atari games, Highway, and CartPole). Furthermore, by evaluating these algorithms against adversarial attacks, we demonstrate that our certification are often tight. All experiment results are available at website https://crop-leaderboard.github.io.

PDF Abstract ICLR 2022 PDF ICLR 2022 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here