Cross-Lingual Learning-to-Rank with Shared Representations

Cross-lingual information retrieval (CLIR) is a document retrieval task where the documents are written in a language different from that of the user{'}s query. This is a challenging problem for data-driven approaches due to the general lack of labeled training data. We introduce a large-scale dataset derived from Wikipedia to support CLIR research in 25 languages. Further, we present a simple yet effective neural learning-to-rank model that shares representations across languages and reduces the data requirement. This model can exploit training data in, for example, Japanese-English CLIR to improve the results of Swahili-English CLIR.

PDF Abstract

Datasets


Introduced in the Paper:

Large-Scale CLIR Dataset

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here