Cross-lingual Linking of Multi-word Entities and their corresponding Acronyms

LREC 2016 Guillaume JacquetMaud EhrmannRalf SteinbergerJaakko V{\"a}yrynen

This paper reports on an approach and experiments to automatically build a cross-lingual multi-word entity resource. Starting from a collection of millions of acronym/expansion pairs for 22 languages where expansion variants were grouped into monolingual clusters, we experiment with several aggregation strategies to link these clusters across languages... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet