Cross-lingual Named Entity List Search via Transliteration

Out-of-vocabulary words are still a challenge in cross-lingual Natural Language Processing tasks, for which transliteration from source to target language or script is one of the solutions. In this study, we collect a personal name dataset in 445 Wikidata languages (37 scripts), train Transformer-based multilingual transliteration models on 6 high- and 4 less-resourced languages, compare them with bilingual models from (Merhav and Ash, 2018) and determine that multilingual models perform better for less-resourced languages... (read more)

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet