Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

2 Nov 2021  ·  Peter Wu, Jiatong Shi, Yifan Zhong, Shinji Watanabe, Alan W Black ·

Speech processing systems currently do not support the vast majority of languages, in part due to the lack of data in low-resource languages. Cross-lingual transfer offers a compelling way to help bridge this digital divide by incorporating high-resource data into low-resource systems. Current cross-lingual algorithms have shown success in text-based tasks and speech-related tasks over some low-resource languages. However, scaling up speech systems to support hundreds of low-resource languages remains unsolved. To help bridge this gap, we propose a language similarity approach that can efficiently identify acoustic cross-lingual transfer pairs across hundreds of languages. We demonstrate the effectiveness of our approach in language family classification, speech recognition, and speech synthesis tasks.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here