Cross-Modal Contextualized Hidden State Projection Method for Expanding of Taxonomic Graphs

Taxonomy is a graph of terms organized hierarchically using is-a (hypernymy) relations. We suggest novel candidate-free task formulation for the taxonomy enrichment task. To solve the task, we leverage lexical knowledge from the pre-trained models to predict new words missing in the taxonomic resource. We propose a method that combines graph-, and text-based contextualized representations from transformer networks to predict new entries to the taxonomy. We have evaluated the method suggested for this task against text-only baselines based on BERT and fastText representations. The results demonstrate that incorporation of graph embedding is beneficial in the task of hyponym prediction using contextualized models. We hope the new challenging task will foster further research in automatic text graph construction methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here