Cross-modal Retrieval with Noisy Correspondence via Consistency Refining and Mining

The success of existing cross-modal retrieval (CMR) methods heavily rely on the assumption that the annotated cross-modal correspondence is faultless. In practice, however, the correspondence of some pairs would be inevitably contaminated during data collection or annotation, thus leading to the so-called Noisy Correspondence (NC) problem. To alleviate the influence of NC, we propose a novel method termed Consistency REfining And Mining (CREAM) by revealing and exploiting the difference between correspondence and consistency. Specifically, the correspondence and the consistency only be coincident for true positive and true negative pairs, while being distinct for false positive and false negative pairs. Based on the observation, CREAM employs a collaborative learning paradigm to detect and rectify the correspondence of positives, and a negative mining approach to explore and utilize the consistency. Thanks to the consistency refining and mining strategy of CREAM, the overfitting on the false positives could be prevented and the consistency rooted in the false negatives could be exploited, thus leading to a robust CMR method. Extensive experiments verify the effectiveness of our method on three image-text benchmarks including Flickr30K, MS-COCO, and Conceptual Captions. Furthermore, we adopt our method into the graph matching task and the results demonstrate the robustness of our method against fine-grained NC problem. The code is available on https://github.com/XLearning-SCU/2024-TIP-CREAM .

PDF

Datasets


Introduced in the Paper:

CC152K

Used in the Paper:

PASCAL VOC SPair-71k COCO-Noisy Flickr30K-Noisy

Results from the Paper


Task Dataset Model Metric Name Metric Value Global Rank Benchmark
Cross-modal retrieval with noisy correspondence CC152K CREAM Image-to-text R@1 40.3 # 10
Image-to-text R@5 68.5 # 2
Image-to-text R@10 77.1 # 3
Text-to-image R@1 40.2 # 14
Text-to-image R@5 68.2 # 3
Text-to-image R@10 78.3 # 2
R-Sum 372.6 # 6
Cross-modal retrieval with noisy correspondence COCO-Noisy CREAM Image-to-text R@1 78.9 # 8
Image-to-text R@5 96.3 # 8
Image-to-text R@10 98.6 # 7
Text-to-image R@1 63.3 # 10
Text-to-image R@5 90.1 # 9
Text-to-image R@10 95.8 # 7
R-Sum 523 # 11
Cross-modal retrieval with noisy correspondence Flickr30K-Noisy CREAM Image-to-text R@1 77.4 # 10
Image-to-text R@5 95.0 # 5
Image-to-text R@10 97.3 # 11
Text-to-image R@1 58.7 # 11
Text-to-image R@5 84.1 # 9
Text-to-image R@10 89.8 # 7
R-Sum 502.3 # 10
Graph Matching PASCAL VOC CREAM matching accuracy 0.814 # 6
Graph Matching SPair-71k CREAM matching accuracy 0.851 # 1
Graph Matching Willow Object Class CREAM matching accuracy 0.988 # 4

Methods


No methods listed for this paper. Add relevant methods here