Cross-model convolutional neural network for multiple modality data representation

19 Nov 2016 Yanbin Wu Li Wang Fan Cui Hongbin Zhai Baoming Dong Jim Jing-Yan Wang

A novel data representation method of convolutional neural net- work (CNN) is proposed in this paper to represent data of different modalities. We learn a CNN model for the data of each modality to map the data of differ- ent modalities to a common space, and regularize the new representations in the common space by a cross-model relevance matrix... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet