CrossHuman: Learning Cross-Guidance from Multi-Frame Images for Human Reconstruction

20 Jul 2022  ·  Liliang Chen, Jiaqi Li, Han Huang, Yandong Guo ·

We propose CrossHuman, a novel method that learns cross-guidance from parametric human model and multi-frame RGB images to achieve high-quality 3D human reconstruction. To recover geometry details and texture even in invisible regions, we design a reconstruction pipeline combined with tracking-based methods and tracking-free methods. Given a monocular RGB sequence, we track the parametric human model in the whole sequence, the points (voxels) corresponding to the target frame are warped to reference frames by the parametric body motion. Guided by the geometry priors of the parametric body and spatially aligned features from RGB sequence, the robust implicit surface is fused. Moreover, a multi-frame transformer (MFT) and a self-supervised warp refinement module are integrated to the framework to relax the requirements of parametric body and help to deal with very loose cloth. Compared with previous works, our CrossHuman enables high-fidelity geometry details and texture in both visible and invisible regions and improves the accuracy of the human reconstruction even under estimated inaccurate parametric human models. The experiments demonstrate that our method achieves state-of-the-art (SOTA) performance.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here