CrowdMI: Multiple Imputation via Crowdsourcing

8 Dec 2016  ·  Lovedeep Gondara ·

Can humans impute missing data with similar proficiency as machines? This is the question we aim to answer in this paper. We present a novel idea of converting observations with missing data in to a survey questionnaire, which is presented to crowdworkers for completion. We replicate a multiple imputation framework by having multiple unique crowdworkers complete our questionnaire. Experimental results demonstrate that using our method, it is possible to generate valid imputations for qualitative and quantitative missing data, with results comparable to imputations generated by complex statistical models.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here