CUR Decompositions, Similarity Matrices, and Subspace Clustering

11 Nov 2017Akram AldroubiKeaton HammAhmet Bugra KokuAli Sekmen

A general framework for solving the subspace clustering problem using the CUR decomposition is presented. The CUR decomposition provides a natural way to construct similarity matrices for data that come from a union of unknown subspaces $\mathscr{U}=\underset{i=1}{\overset{M}\bigcup}S_i$... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet