Customizing Sequence Generation with Multi-Task Dynamical Systems

11 Oct 2019  ·  Alex Bird, Christopher K. I. Williams ·

Dynamical system models (including RNNs) often lack the ability to adapt the sequence generation or prediction to a given context, limiting their real-world application. In this paper we show that hierarchical multi-task dynamical systems (MTDSs) provide direct user control over sequence generation, via use of a latent code $\mathbf{z}$ that specifies the customization to the individual data sequence. This enables style transfer, interpolation and morphing within generated sequences. We show the MTDS can improve predictions via latent code interpolation, and avoid the long-term performance degradation of standard RNN approaches.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here