Cycle-of-Learning for Autonomous Systems from Human Interaction

28 Aug 2018  ·  Nicholas R. Waytowich, Vinicius G. Goecks, Vernon J. Lawhern ·

We discuss different types of human-robot interaction paradigms in the context of training end-to-end reinforcement learning algorithms. We provide a taxonomy to categorize the types of human interaction and present our Cycle-of-Learning framework for autonomous systems that combines different human-interaction modalities with reinforcement learning. Two key concepts provided by our Cycle-of-Learning framework are how it handles the integration of the different human-interaction modalities (demonstration, intervention, and evaluation) and how to define the switching criteria between them.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here