DASC: Robust Dense Descriptor for Multi-modal and Multi-spectral Correspondence Estimation

27 Apr 2016  ·  Seungryong Kim, Dongbo Min, Bumsub Ham, Minh N. Do, Kwanghoon Sohn ·

Establishing dense correspondences between multiple images is a fundamental task in many applications. However, finding a reliable correspondence in multi-modal or multi-spectral images still remains unsolved due to their challenging photometric and geometric variations... In this paper, we propose a novel dense descriptor, called dense adaptive self-correlation (DASC), to estimate multi-modal and multi-spectral dense correspondences. Based on an observation that self-similarity existing within images is robust to imaging modality variations, we define the descriptor with a series of an adaptive self-correlation similarity measure between patches sampled by a randomized receptive field pooling, in which a sampling pattern is obtained using a discriminative learning. The computational redundancy of dense descriptors is dramatically reduced by applying fast edge-aware filtering. Furthermore, in order to address geometric variations including scale and rotation, we propose a geometry-invariant DASC (GI-DASC) descriptor that effectively leverages the DASC through a superpixel-based representation. For a quantitative evaluation of the GI-DASC, we build a novel multi-modal benchmark as varying photometric and geometric conditions. Experimental results demonstrate the outstanding performance of the DASC and GI-DASC in many cases of multi-modal and multi-spectral dense correspondences. read more

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here