Data augmentation and multimodal learning for predicting drug response in patient-derived xenografts from gene expressions and histology images

Patient-derived xenografts (PDXs) are an appealing platform for preclinical drug studies because the in vivo environment of PDXs helps preserve tumor heterogeneity and usually better mimics drug response of patients with cancer compared to CCLs. We investigate multimodal neural network (MM-Net) and data augmentation for drug response prediction in PDXs. The MM-Net learns to predict response using drug descriptors, gene expressions (GE), and histology whole-slide images (WSIs) where the multi-modality refers to the tumor features. We explore whether the integration of WSIs with GE improves predictions as compared with models that use GE alone. We use two methods to address the limited number of response values: 1) homogenize drug representations which allows to combine single-drug and drug-pairs treatments into a single dataset, 2) augment drug-pair samples by switching the order of drug features which doubles the sample size of all drug-pair samples. These methods enable us to combine single-drug and drug-pair treatments, allowing us to train multimodal and unimodal neural networks (NNs) without changing architectures or the dataset. Prediction performance of three unimodal NNs which use GE are compared to assess the contribution of data augmentation methods. NN that uses the full dataset which includes the original and the augmented drug-pair treatments as well as single-drug treatments significantly outperforms NNs that ignore either the augmented drug-pairs or the single-drug treatments. In assessing the contribution of multimodal learning based on the MCC metric, MM-Net statistically significantly outperforms all the baselines. Our results show that data augmentation and integration of histology images with GE can improve prediction performance of drug response in PDXs.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here