Data augmentation as stochastic optimization

28 Sep 2020  ·  Boris Hanin, Yi Sun ·

We present a theoretical framework recasting data augmentation as stochastic optimization for a sequence of time-varying proxy losses. This provides a unified language for understanding techniques commonly thought of as data augmentation, including synthetic noise and label-preserving transformations, as well as more traditional ideas in stochastic optimization such as learning rate and batch size scheduling. We then specialize our framework to study arbitrary augmentations in the context of a simple model (overparameterized linear regression). We extend in this setting the classical Monro-Robbins theorem to include augmentation and obtain rates of convergence, giving conditions on the learning rate and augmentation schedule under which augmented gradient descent converges. Special cases give provably good schedules for augmentation with additive noise, minibatch SGD, and minibatch SGD with noise.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here