Data Augmentation vs. Equivariant Networks: A Theory of Generalization on Dynamics Forecasting

19 Jun 2022  ·  Rui Wang, Robin Walters, Rose Yu ·

Exploiting symmetry in dynamical systems is a powerful way to improve the generalization of deep learning. The model learns to be invariant to transformation and hence is more robust to distribution shift. Data augmentation and equivariant networks are two major approaches to injecting symmetry into learning. However, their exact role in improving generalization is not well understood. In this work, we derive the generalization bounds for data augmentation and equivariant networks, characterizing their effect on learning in a unified framework. Unlike most prior theories for the i.i.d. setting, we focus on non-stationary dynamics forecasting with complex temporal dependencies.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here