Data-driven calibration of linear estimators with minimal penalties

NeurIPS 2009  ·  Sylvain Arlot, Francis R. Bach ·

This paper tackles the problem of selecting among several linear estimators in non-parametric regression; this includes model selection for linear regression, the choice of a regularization parameter in kernel ridge regression or spline smoothing, and the choice of a kernel in multiple kernel learning. We propose a new algorithm which first estimates consistently the variance of the noise, based upon the concept of minimal penalty which was previously introduced in the context of model selection. Then, plugging our variance estimate in Mallows $C_L$ penalty is proved to lead to an algorithm satisfying an oracle inequality. Simulation experiments with kernel ridge regression and multiple kernel learning show that the proposed algorithm often improves significantly existing calibration procedures such as 10-fold cross-validation or generalized cross-validation.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here