Data-Driven Control of Unknown Systems: A Linear Programming Approach

30 Mar 2020 Tanzanakis Alexandros Lygeros John

We consider the problem of discounted optimal state-feedback regulation for general unknown deterministic discrete-time systems. It is well known that open-loop instability of systems, non-quadratic cost functions and complex nonlinear dynamics, as well as the on-policy behavior of many reinforcement learning (RL) algorithms, make the design of model-free optimal adaptive controllers a challenging task... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet