Data Driven Control with Learned Dynamics: Model-Based versus Model-Free Approach

16 Jun 2020Wenjian HaoYiqiang Han

This paper compares two different types of data-driven control methods, representing model-based and model-free approaches. One is a recently proposed method - Deep Koopman Representation for Control (DKRC), which utilizes a deep neural network to map an unknown nonlinear dynamical system to a high-dimensional linear system, which allows for employing state-of-the-art control strategy... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet