Data-Driven Deep Learning of Partial Differential Equations in Modal Space

15 Oct 2019  ·  Kailiang Wu, Dongbin Xiu ·

We present a framework for recovering/approximating unknown time-dependent partial differential equation (PDE) using its solution data. Instead of identifying the terms in the underlying PDE, we seek to approximate the evolution operator of the underlying PDE numerically. The evolution operator of the PDE, defined in infinite-dimensional space, maps the solution from a current time to a future time and completely characterizes the solution evolution of the underlying unknown PDE. Our recovery strategy relies on approximation of the evolution operator in a properly defined modal space, i.e., generalized Fourier space, in order to reduce the problem to finite dimensions. The finite dimensional approximation is then accomplished by training a deep neural network structure, which is based on residual network (ResNet), using the given data. Error analysis is provided to illustrate the predictive accuracy of the proposed method. A set of examples of different types of PDEs, including inviscid Burgers' equation that develops discontinuity in its solution, are presented to demonstrate the effectiveness of the proposed method.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here