Data-Driven Min-Max MPC for Linear Systems: Robustness and Adaptation

29 Apr 2024  ·  Yifan Xie, Julian Berberich, Frank Allgöwer ·

Data-driven controllers design is an important research problem, in particular when data is corrupted by the noise. In this paper, we propose a data-driven min-max model predictive control (MPC) scheme using noisy input-state data for unknown linear time-invariant (LTI) system. The unknown system matrices are characterized by a set-membership representation using the noisy input-state data. Leveraging this representation, we derive an upper bound on the worst-case cost and determine the corresponding optimal state-feedback control law through a semidefinite program (SDP). We prove that the resulting closed-loop system is robustly stabilized and satisfies the input and state constraints. Further, we propose an adaptive data-driven min-max MPC scheme which exploits additional online input-state data to improve closed-loop performance. Numerical examples show the effectiveness of the proposed methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here